Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.997
Filtrar
1.
Biomed Res Int ; 2024: 5924799, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590385

RESUMO

This study accessed the potential antimalarial activity of triterpene glycoside of H. atra through targeting orotidine 5-monophosphate decarboxylase protein (PfOMPDC) in P. falciparum by molecular docking. Nine triterpene glycosides from H. atra extract modeled the structure by the Corina web server and interacted with PfOMPDC protein by using Hex 8.0.0. The docking results were visualized and analyzed by Discovery Studio version 21.1.1. 17-Hydroxyfuscocineroside B showed the lowest binding energy in PfOMPDC interaction, which was -1,098.13 kJ/mol. Holothurin A3, echinoside A, and fuscocineroside C showed low binding energy. Nine triterpene glycosides of H. atra performed interaction with PfOMPDC protein at the same region. Holothurin A1 posed interaction with PfOMPDC protein by 8 hydrogen bonds, 3 hydrophobic interactions, and 8 unfavorable bonds. Several residues were detected in the same active sites of other triterpene glycosides. Residue TYR111 was identified in all triterpene glycoside complexes, except holothurin A3 and calcigeroside B. In summary, the triterpene glycoside of H. atra is potentially a drug candidate for malaria therapeutic agents. In vitro and in vivo studies were required for further investigation.


Assuntos
Carboxiliases , Glicosídeos Cardíacos , Triterpenos , Uridina/análogos & derivados , Simulação de Acoplamento Molecular , Glicosídeos/química , Triterpenos/química
2.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474596

RESUMO

Euphorbia is a large genus of the Euphorbiaceae family. Around 250 species of the Euphorbia genus have been studied chemically and pharmacologically; different compounds have been isolated from these species, especially diterpenes and triterpenes. Several reports show that several species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as abietanes, ingenanes, and lathyranes. In addition, it was found that some diterpenes isolated from different Euphorbia species have anti-cancer activity. In this review, we included compounds isolated from species of the Euphorbia genus with anti-inflammatory or cytotoxic effects published from 2018 to September 2023. The databases used for this review were Science Direct, Scopus, PubMed, Springer, and Google Scholar, using the keywords Euphorbia with anti-inflammatory or cytotoxic activity. In this review, 68 studies were collected and analyzed regarding the anti-inflammatory and anti-cancer activities of 264 compounds obtained from 36 species of the Euphorbia genus. The compounds included in this review are terpenes (95%), of which 68% are diterpenes, especially of the types ingenanes, abietanes, and triterpenes (approximately 15%).


Assuntos
Antineoplásicos , Diterpenos , Euphorbia , Triterpenos , Euphorbia/química , Abietanos , Estrutura Molecular , Diterpenos/química , Triterpenos/química , Anti-Inflamatórios
3.
Molecules ; 29(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38542930

RESUMO

Rhizoma Panacis Japonici (RPJ) is an ancient herbal medicine from China that has long been employed for its medicinal benefits in relieving arthritis physical debility and diverse afflictions. The primary bioactive constituents found in RPJ are triterpene saponins, which exhibit numerous pharmacological actions, including anti-inflammatory, antioxidant, and immunomodulating effects. The present study established a straightforward and effective approach for characterizing triterpene saponins in RPJ. An offline HILIC × RP LC/QTOF-MS method was developed, along with a self-constructed in-house database containing 612 saponins reported in the Panax genus and 228 predicted metabolites. The approach achieved good chromatographic performance in isolating triterpene saponins of RPJ, with the HILIC column as the first dimension (1D) and the BEH C18 column as the second dimension (2D). The developed two-dimensional liquid chromatography system exhibited an orthogonality of 0.61 and a peak capacity of 1249. Detection was performed using a QTOF mass spectrometer in a data-independent manner (MSE) in a negative ion mode. Using the in-house database, the collected MS data were processed by an automatic workflow on UNIFI 1.8.2 software, which included data correction, matching of precursor and product ions, and peak annotation. In this study, 307 saponins were characterized from RPJ and 76 saponins were identified for the first time in Panax japonicus. This research not only enhances our understanding of the chemical characteristics of RPJ but also offers a simple and efficient method for analyzing the complex composition of herbal medicine.


Assuntos
Medicamentos de Ervas Chinesas , Panax , Plantas Medicinais , Saponinas , Triterpenos , Saponinas/química , Triterpenos/química , Cromatografia Líquida de Alta Pressão/métodos , Extratos Vegetais/química , Espectrometria de Massas , Plantas Medicinais/química
4.
J Ethnopharmacol ; 328: 118080, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38521426

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The use of antineoplastic drugs, such as cisplatin, in clinical practice can cause adverse effects in patients, such as liver injury, which limits their long-term use. Therefore, there is an urgent need to develop alternative therapeutic strategies or drugs to minimize cisplatin-induced liver injury. Huangqi, the root of Astragalus membranaceus, is extensively used in traditional Chinese medicine (TCM) and has been employed in treating diverse liver injuries. Astragalus membranaceus contains several bioactive constituents, including triterpenoid saponins, one of which, astragaloside IV (ASIV), has been reported to have anti-inflammatory and antioxidant stress properties. However, its potential in ameliorating cisplatin-induced liver injury has not been explored. AIM OF THE STUDY: The objective of this study was to examine the mechanism by which ASIV protects against cisplatin-induced liver injury. MATERIALS AND METHODS: This study established a model of cisplatin-induced liver injury in mice, followed by treatment with various doses of astragaloside IV (40 mg/kg, 80 mg/kg). In addition, a model of hepatocyte ferroptosis in AML-12 cells was established using RSL3. The mechanism of action of astragaloside IV was investigated using a range of methods, including Western blot assay, qPCR, immunofluorescence, histochemistry, molecular docking, and high-content imaging system. RESULTS: The findings suggested a significant improvement in hepatic injury, inflammation and oxidative stress phenotypes with the administration of ASIV. Furthermore, network pharmacological analyses provided evidence that a major pathway for ASIV to attenuate cisplatin-induced hepatic injury entailed the cell death cascade pathway. It was observed that ASIV effectively inhibited ferroptosis both in vivo and in vitro. Subsequent experimental outcomes provided further validation of ASIV's ability to hinder ferroptosis through the inhibition of PPARα/FSP1 signaling pathway. The current findings suggest that ASIV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury. CONCLUSIONS: The current findings suggest that astragaloside IV could function as a promising phytotherapy composition to alleviate cisplatin-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Ferroptose , Saponinas , Triterpenos , Humanos , Camundongos , Animais , Cisplatino/toxicidade , Simulação de Acoplamento Molecular , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Saponinas/farmacologia , Saponinas/uso terapêutico , Saponinas/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química
5.
J Ethnopharmacol ; 328: 118104, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38531431

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Galphimia glauca is a medicinal plant that treats inflammatory and anti-rheumatic problems. Its anti-inflammatory capacity has been reported pharmacologically, attributed to the triterpenes G-A and G-E. AIM: The objective of the present work was to measure the anti-inflammatory and immunomodulatory effect of the methanolic extract (GgMeOH) of Galphimia glauca and the isolated galphimines G-A and G-E, first in an acute test of plantar edema with carrageenan, and later in the model of experimental-induced arthritis with CFA. The effect was measured by quantifying joint inflammation, the concentration of pro- (TNF-α, IL-6, IL-17) and anti-inflammatory (IL-10, and IL-4) cytokines, and the ADA enzyme in joints, kidneys, and spleen from mice with experimental arthritis. METHOD: The extract and the active triterpenes were obtained according to established methods using different chromatographic techniques. Female ICR strain mice were subjected to intraplantar administration with carrageenan and treated with different doses of GgMeOH, G-A, and G-E; edema was monitored at different times. Subsequently, the concentration of TNF-a and IL-10 in the spleen and swollen paw was quantified. Meloxicam (MEL) was used as an anti-inflammatory control drug. The most effective doses of each treatment were analyzed using a complete Freunds adjuvant (CFA)-induced experimental arthritis model. Joint inflammation was followed throughout the experiment. Ultimately, the concentration of inflammation markers, oxidant stress, and ADA activity was quantified. In this experimental stage, methotrexate (MTX) was used as an antiarthritic drug. RESULTS: Treatments derived from G. glauca, GgMeOH (DE50 = 158 mg/kg), G-A (DE50 = 2 mg/kg), and G-E (DE50 = 1.5 mg/kg) caused an anti-inflammatory effect in the plantar edema test with carrageenan. In the CFA model, joint inflammation decreased with all natural treatments; GgMeOH and G-A inhibited the ADA enzyme in all organs analyzed (joints, serum, spleen, left and right kidneys), while G-E inhibited the enzyme in joints, serum, and left kidney. CFA caused an increase in the weight index of the organs, an effect that was counteracted by the administration of G. glauca treatments, which also modulate the response to the cytokines analyzed in the different organs (IL-4, IL-10, IL-17, IL-6, and TNF- α). CONCLUSION: It is shown, for the first time, that the GgMeOH extract and the triterpenes G-A and G-E of Galphimia glauca have an anti-arthritic effect (anti-inflammatory, immunomodulatory, antioxidant, and ADA inhibitor), using an experimental arthritis model with CFA. Therefore, knowledge of the plant as a possible therapeutic agent for this rheumatic condition is expanding.


Assuntos
Artrite Experimental , Artrite , Galphimia , Triterpenos , Camundongos , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Carragenina , Interleucina-10 , Galphimia/química , Interleucina-17 , Interleucina-6 , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química , Interleucina-4 , Camundongos Endogâmicos ICR , Anti-Inflamatórios/efeitos adversos , Citocinas , Inflamação/tratamento farmacológico , Fator de Necrose Tumoral alfa , Artrite/tratamento farmacológico , Edema/induzido quimicamente , Edema/tratamento farmacológico , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico
6.
Physiol Plant ; 176(2): e14260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511471

RESUMO

Bacosides are dammarane-type triterpenoidal saponins in Bacopa monnieri and have various pharmacological applications. All the bacosides are diversified from two isomers, i.e., jujubogenin and pseudojujubogenin. The biosynthetic pathway of bacoside is not well elucidated. In the present study, we characterized a UDP-glycosyltransferase, UGT79A18, involved in the glycosylation of pseudojujubogenin. UGT79A18 shows higher expression in response to 5 h of wounding, and 3 h of MeJA treatment. The recombinant UGT79A18 shows in vitro activity against a wide range of flavonoids and triterpenes and has a substrate preference for protopanaxadiol, a dammarane-type triterpene. Secondary metabolite analysis of overexpression and knockdown lines of UGT79A18 in B. monnieri identify bacopasaponin D, bacopaside II, bacopaside N2 and pseudojujubogenin glucosyl rhamnoside as the major bacosides that were differentially accumulated. In the overexpression lines of UGT79A18, we found 1.7-fold enhanced bacopaside II, 8-fold enhanced bacopasaponin D, 3-fold enhanced pseudojujubogenin glucosyl rhamnoside, and 1.6-fold enhanced bacopaside N2 content in comparison with vector control plant, whereas in the knockdown lines of UGT79A18, we found 1.4-fold reduction in bacopaside II content, 3-fold reduction in the bacopasaponin D content, 2-fold reduction in the pseudojujubogenin glucosyl rhamnoside content, and 1.5-fold reduction in bacopaside N2 content in comparison with vector control. These results suggest that UGT79A18 is a significant UDP glycosyltransferase involved in glycosylating pseudojujubogenin and enhancing the pseudojujubogenin-derived bacosides.


Assuntos
Acetatos , Bacopa , Ciclopentanos , Oxilipinas , Saponinas , Triterpenos , Bacopa/genética , Bacopa/química , Glicosiltransferases/genética , Vias Biossintéticas , Triterpenos/química , Triterpenos/farmacologia , Triterpenos/uso terapêutico , 60630 , Difosfato de Uridina , Extratos Vegetais/química
7.
Artigo em Inglês | MEDLINE | ID: mdl-38442634

RESUMO

In this work, a high-speed shear extraction off-line coupling high-speed countercurrent chromatography method was developed to separate maslinic acid and oleanolic acid from olive pomace. To improve extraction efficiency, the polar disparity between maslinic acid and oleanolic acid necessitated the concurrent utilization of both polar and non-polar solvents during high-speed shear extraction. Then, the high-speed shear extraction was directly feed to high-speed countercurrent chromatography for subsequently separation. A total of 250 min were needed to complete the extraction and separation process. This yielded two molecules from 3.3 g of defatted olive pomace: 7.2 mg of 93.8 % pure maslinic acid and 2.3 mg of 90.1 % pure oleanolic acid, both determined by HPLC at 210 nm. Furthermore, the compounds exhibited inhibitory activity against Escherichia coli and Staphylococcus aureus. At a concentration of 100 µg/mL, its efficacy in inhibiting hyaluronidase was comparable to that of the standard drug indomethacin. Compared with the conventional separation method, this coupled technique reduced the whole time due to the direct injection of sample extraction solution. This technique provides a useful approach for the separation of natural products with significant polarity differences.


Assuntos
Olea , Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Triterpenos , Ácido Oleanólico/análise , Olea/química , Distribuição Contracorrente , Antibacterianos/farmacologia , Triterpenos/química , Cromatografia Líquida de Alta Pressão , Extratos Vegetais/farmacologia , Extratos Vegetais/análise
8.
Chem Biol Drug Des ; 103(3): e14506, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38480508

RESUMO

A series of new betulin, lupeol, erythrodiol, and oleanolic acid phosphoryloxy- and furoyloxy-derivatives has been synthesized and their structure was confirmed by NMR spectroscopy. Synthesized compounds were subjected to Ellman's assays to determine their ability to inhibit the enzymes AChE and BChE. Among them, diethoxyphosphoryloxy-oleanolic acid inhibited BChE with a value of 99%, thereby acting as a mixed-type inhibitor holding very low Ki values of Ki = 6.59 nM and Ki ' = 1.97 nM, respectively.


Assuntos
Ácido Oleanólico , Triterpenos , Butirilcolinesterase/química , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Ácido Oleanólico/farmacologia , Triterpenos/farmacologia , Triterpenos/química , Relação Estrutura-Atividade
9.
Phytochemistry ; 221: 114049, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38462214

RESUMO

Six undescribed triterpenoid saponins, namely aescuchinosides A-F, along with seven known triterpenoid saponins, were isolated from the seeds of Aesculus chinensis. Barrigenol-like triterpenoids (BATs) constitute these saponins. Protoaescigenin serves as their aglycone, with various oxygen-containing groups, including acetyl, isobutyryl, tigloyl, and angeloyl groups situated at C-21, C-22, and C-28. Various techniques, including 1D and 2D-NMR spectroscopy, high-resolution mass spectrometry, and acid hydrolysis, were employed to determine the structures of these compounds. The antihyperglycemic effects of the isolated compounds were examined in insulin -resistant HepG2 cells induced by palmitic acid treatment. At a concentration of 6 µM, aesculinoside F exhibited a significant increase in glucose consumption. In addition, aesculinoside F demonstrated the potential to improve insulin resistant by upregulating the PI3K/AKT pathway. These results indicate that the seeds of A.chinensis hold promising potential for preventing insulin resistant related disease.


Assuntos
Aesculus , Saponinas , Triterpenos , Aesculus/química , Fosfatidilinositol 3-Quinases , Triterpenos/farmacologia , Triterpenos/química , Sementes/química , Saponinas/farmacologia , Saponinas/química , Insulina , Hipoglicemiantes/farmacologia
10.
J Nat Prod ; 87(3): 520-529, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38410947

RESUMO

The phytochemical study of the Pisolithus arhizus fruiting body methanol extract led to the isolation of six new triterpenoids (1-6) and one new naphthalenoid pulvinic acid derivative (7), together with five known compounds, including norbadione A (8). Their structure was established from 1D and 2D NMR spectroscopy and HRESIMS analyses. The absolute configuration of the triterpenoids was determined by circular dichroism. The two pulvinic acid derivatives 7 and 8, showing the highest activity in modulating IL-6 secretion, were tested for their effect on COX-2, STAT3, and p-STAT3 proteins; both compounds were able to downregulate p-STAT3.


Assuntos
Anti-Inflamatórios , Basidiomycota , Ácidos Carboxílicos , Lactonas , Triterpenos , Estrutura Molecular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Triterpenos/farmacologia , Triterpenos/química , Extratos Vegetais/farmacologia
11.
Eur J Med Res ; 29(1): 106, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326876

RESUMO

Scientists have been compelled to search for alternative treatments due to the increasing prevalence of chemoresistance as well as the agonising and distressing side effects of both chemotherapy and radiation. Plant extracts have been exploited to treat various medical conditions for ages. Considering this fact, the main focus of various recent studies that are being conducted to find new and potent anticancer drugs involves the identification and utilisation of potential therapeutic chemicals present in plant extracts. Koetjapic acid (KJA), which belongs to the family of triterpenes, is primarily isolated from Sandoricum koetjape. Ongoing investigations into its therapeutic applications have revealed its tendency to impede the growth and proliferation of cancer cells. Koetjapic acid activates the intrinsic apoptotic pathway and promotes the death of cancer cells. Moreover, it inhibits angiogenesis and the dissemination of tumour (metastasis) by targeting the VEGF signalling cascade. Therefore, this study aims to elucidate the underlying mechanism of anticancer activity of koetjapic acid, providing significant insight into the compound's potential as an anticancer agent.


Assuntos
Antineoplásicos , Triterpenos , Humanos , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Extratos Vegetais/farmacologia
12.
Chem Biodivers ; 21(4): e202301979, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38302832

RESUMO

Acetyl-11-keto-ß-boswellic acid (AKBA) is known to inhibit the growth of glioblastoma (GBM) cells and subcutaneous GBM. A series of acetyl-11-keto-ß-boswellic acid (AKBA) derivatives containing the oxime-ester functionality or amide side chains were synthesized, and their anti-GBM activities were evaluated. Some of these compounds exhibited significant inhibitory activity against cell proliferation in U87 and U251 GBM cell lines, with IC50 values in the micromolar concentration range. Cellular thermal shift analysis showed that A-01 and A-10 improved the thermal stability of FOXM1, indicating that these highly active compounds may directly bind to FOXM1 in cells. Docking studies of the two most active compounds, A-01 and A-10, revealed key interactions between these compounds and the active site of FOXM1, in which the amide moiety at the C-24 position was essential for improving the activity. These results suggested that A-10 is a suitable lead molecule for the development of FOXM1 inhibitors. Thus, the rational design of AKBA derivatives with amide side chains holds significant potential for discovering of a new class of triterpenoids capable of inhibiting GBM cell proliferation.


Assuntos
Autoanticorpos , Benzenoacetamidas , Glioblastoma , Piperidonas , Triterpenos , Humanos , Glioblastoma/tratamento farmacológico , Triterpenos/química , Linhagem Celular Tumoral , Amidas
13.
Phytochemistry ; 220: 114033, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38373572

RESUMO

Ten previously undescribed cucurbitane-type triterpenoids, namely hemslyencins A-F (1-6) and hemslyencosides A-D (7-10), together with twenty previously reported compounds (11-30), were isolated from the tubers of Hemsleya chinensis. Their structures were elucidated by unambiguous spectroscopic data (UV, IR, HR-ESI-MS, 1D and 2D NMR data). Hemslyencins A and B (1 and 2) possessing unique 9, 11-seco-ring system with a six-membered lactone moiety, were the first examples among of the cucurbitane-type triterpenoids, and hemslyencins C and D (3 and 4) and hemslyencoside D (10) are the infrequent pentacyclic cucurbitane triterpenes featuring a 6/6/6/5/6 fused system. The cytotoxic activities of all isolated compounds were evaluated against MCF-7, HCT-116, HeLa, and HepG2 cancer cells, and their structure-activity relationships (SARs) was discussed as well. Compounds 17, 25, and 26 showed significant cytotoxic effects with IC50 values ranging from 1.31 to 9.89 µM, among which compound 25 induced both apoptosis and cell cycle arrest at G2/M phase in a dose dependent manner against MCF-7 cells.


Assuntos
Antineoplásicos , Triterpenos , Humanos , Triterpenos/farmacologia , Triterpenos/química , Glicosídeos/química , Tubérculos/química , Células HeLa , Estrutura Molecular
14.
Bioorg Chem ; 145: 107230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387397

RESUMO

Historically, Astragalus membranaceus Bunge has been used as a beneficial medicinal plant, particularly in the Asian traditional medical systems, for the treatment of various human diseases such as stomach ulcers, diarrhea, and respiratory issues associated with phlegm. In this study, a phytochemical characterization of the aerial parts of A. membranaceusled to the isolation of 29 oleanane-type triterpenoid saponins, including 11 new compounds named astraoleanosides E-P (6-9, 13, 14, 18-22), as well as 18 known ones. The structures of these compounds were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry. Among them, astraoleanoside H (9) and cloversaponin III (15) demonstrated the most potent ß-glucuronidase inhibitory activities, with IC50 values of 21.20 ± 0.75 and 9.05 ± 0.47 µM, respectively, compared to the positive control d-saccharic acid 1,4-lactone (IC50 = 20.62 ± 1.61 µM). Enzyme kinetics studies were then conducted to investigate the type of inhibition exhibited by these active compounds. In addition, the binding mechanism, key interactions, binding stability, and dynamic behavior of protein-ligand complexes were investigated through in silico approaches, such as molecular docking and molecular dynamics simulations. These findings highlight the promising potential of triterpenoid saponins from A. membranaceus as lead compounds for ß-glucuronidase inhibitors, offering new possibilities for the development of therapeutic agents targeting various diseases where ß-glucuronidase plays a crucial role.


Assuntos
Ácido Oleanólico , Ácido Oleanólico/análogos & derivados , Saponinas , Triterpenos , Humanos , Estrutura Molecular , Astragalus propinquus/química , Simulação de Acoplamento Molecular , Saponinas/química , Ácido Oleanólico/química , Componentes Aéreos da Planta/química , Triterpenos/farmacologia , Triterpenos/química
15.
J Agric Food Chem ; 72(9): 4574-4586, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38385335

RESUMO

Extensive research has been conducted on Camellia oleifera Abel., a cultivar predominantly distributed in China, to investigate its phytochemical composition, owning to its potential as an edible oil crop. Pentacyclic triterpene saponins, as essential active constituents, play a significant role in contributing to the pharmacological effects of this cultivar. The saponins derived from C. oleifera (CoS) offer a diverse array of bioactivity benefits, including antineoplastic/bactericidal/inflammatory properties, cardiovascular protection, neuroprotection, as well as hypoglycemic and hypolipidemic effects. This review presents a comprehensive analysis of the isolation and pharmacological properties of CoS. Specially, we attempt to reveal the antitumor structure-activity relationship (SAR) of CoS-derived triterpenoids. The active substitution sites of CoS, namely, C-3, C-15, C-16, C-21, C-22, C-23, and C-28 pentacyclic triterpenoids, make it a unique and highly valuable substance with significant medicinal and culinary applications. As such, CoS can play a critical role in transforming people's lives, providing unique medicinal benefits, and contributing to the advancement of both medicine and cuisine.


Assuntos
Camellia , Saponinas , Triterpenos , Humanos , Triterpenos/química , Camellia/química , Relação Estrutura-Atividade , Sementes/química , Saponinas/farmacologia , Saponinas/química
16.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339223

RESUMO

Aralia elata (Miq.) Seem is a medicinal plant that shares a common pathway for the biosynthesis of triterpenoid saponins with Panax ginseng. Here, we transferred the dammarenediol-II synthase gene from P. ginseng (PgDDS; GenBank: AB122080.1) to A. elata. The growth of 2-year-old transgenic plants (L27; 9.63 cm) was significantly decreased compared with wild-type plants (WT; 74.97 cm), and the leaflet shapes and sizes of the transgenic plants differed from those of the WT plants. Based on a terpene metabolome analysis of leaf extracts from WT, L13, and L27 plants, a new structural skeleton for ursane-type triterpenoid saponins was identified. Six upregulated differentially accumulated metabolites (DAMs) were detected, and the average levels of Rg3 and Re in the leaves of the L27 plants were 42.64 and 386.81 µg/g, respectively, increased significantly compared with the WT plants (15.48 and 316.96 µg/g, respectively). Thus, the expression of PgDDS in A. elata improved its medicinal value.


Assuntos
Aralia , Plantas Medicinais , Saponinas , Triterpenos , Aralia/genética , Aralia/química , Saponinas/química , Triterpenos/química , Plantas Medicinais/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Folhas de Planta/metabolismo
17.
Int J Mol Sci ; 25(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38396785

RESUMO

Betulinic acid is a naturally occurring compound that can be obtained through methanolic or ethanolic extraction from plant sources, as well as through chemical synthesis or microbial biotransformation. Betulinic acid has been investigated for its potential therapeutic properties, and exhibits anti-inflammatory, antiviral, antimalarial, and antioxidant activities. Notably, its ability to cross the blood-brain barrier addresses a significant challenge in treating neurological pathologies. This review aims to compile information about the impact of betulinic acid as an antitumor agent, particularly in the context of glioblastoma. Importantly, betulinic acid demonstrates selective antitumor activity against glioblastoma cells by inhibiting proliferation and inducing apoptosis, consistent with observations in other cancer types. Compelling evidence published highlights the acid's therapeutic action in suppressing the Akt/NFκB-p65 signaling cascade and enhancing the cytotoxic effects of the chemotherapeutic agent temozolomide. Interesting findings with betulinic acid also suggest a focus on researching the reduction of glioblastoma's invasiveness and aggressiveness profile. This involves modulation of extracellular matrix components, remodeling of the cytoskeleton, and secretion of proteolytic proteins. Drawing from a comprehensive review, we conclude that betulinic acid formulations as nanoparticles and/or ionic liquids are promising drug delivery approaches with the potential for translation into clinical applications for the treatment and management of glioblastoma.


Assuntos
Antineoplásicos , Glioblastoma , Triterpenos , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Triterpenos/química , Triterpenos Pentacíclicos/uso terapêutico , Ácido Betulínico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/química
18.
Arch Pharm Res ; 47(3): 272-287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38416389

RESUMO

Gymnopilus orientispectabilis, also known as "big laughter mushroom," is a hallucinogenic poisonous mushroom that causes excessive laughter upon ingestion. From the fruiting bodies of G. orientispectabilis, eight lanostane-type triterpenoids (1-8), including seven novel compounds: gymnojunols A-G (2-8), were isolated. The chemical structures of these new compounds (2-8) were determined by analyzing their 1D and 2D NMR spectra and HR-EISMS, and their absolute configurations were unambiguously assigned by quantum chemical ECD calculations and a computational method coupled with a statistical procedure (DP4+). Upon evaluating autophagic activity, compounds 2, 6, and 7 increased LC3B-II levels in HeLa cells to a similar extent as bafilomycin, an autophagy inhibitor. In contrast, compound 8 decreased the levels of both LC3B-I and LC3B-II, and a similar effect was observed following treatment with rapamycin, an autophagy inducer. Our findings provide experimental evidence for new potential autophagy modulators in the hallucinogenic poisonous mushroom G. orientispectabilis.


Assuntos
Agaricales , Venenos , Triterpenos , Humanos , Triterpenos/farmacologia , Triterpenos/química , Venenos/análise , Estrutura Molecular , Células HeLa , Agaricales/química , Carpóforos/química
19.
Steroids ; 205: 109390, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367679

RESUMO

The Genus Dysoxylum (Meliaceae) consists of approximately 80 species that are abundant in structurally diverse triterpenoids. The present study focused on isolating new triterpenoids from the bark of Dysoxylum malabaricum, one of the predominant species of Dysoxylum present in India. The methanol-dichloromethane bark extract was subjected to LCMS profiling followed by silica gel column chromatography and HPLC analysis to target new compounds. Two new ring A-modified cycloartane-type triterpenoids (1 and 2) were isolated from the bark extract. Spectroscopic methods like NMR, HRESIMS data, and electronic circular dichroism calculations elucidated the structuresandabsolute configurations of the isolated compounds. These compounds were evaluated for their cytotoxic potential against breast cancer cells and displayed notable cytotoxicity. Compound 1 exhibited the highest cytotoxicity against the MDA-MB-231 cells and induced apoptotic cell death. Also, it was able to inhibit glucose uptake and increase nitric oxide production in breast cancer cells.


Assuntos
Antineoplásicos Fitogênicos , Neoplasias da Mama , Meliaceae , Triterpenos , Humanos , Feminino , Estrutura Molecular , Casca de Planta/química , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/química , Triterpenos/farmacologia , Triterpenos/química , Meliaceae/química , Extratos Vegetais/química
20.
Chem Biodivers ; 21(4): e202400100, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38263951

RESUMO

A total of seven compounds, including four triterpene acids and three triterpene lactones, were isolated from the ethanolic extract of the roots of Astilbe grandis Stapf ex Wils. Two of the triterpene lactones (1-2) were never reported before and compounds 3-5 were isolated for the first time from the plant. The structures of these compounds were all identified by spectroscopic analysis. Compounds 1-2 were analyzed by 2D NMR and their absolute configurations were determined using experimental CD in comparison with calculated ECD values. The structure of compound 1 was also further confirmed by single crystal X-ray diffraction analysis. The cytotoxicity of compounds 1-7 on A549, Caco-2, H460 and Skov-3 tumor cells were all evaluated using CCK-8. They all exhibited positive inhibitory effects on Caco-2 tumor cells with IC50 less than10 µM, while the inhibitory effects on H460 tumor cells were more moderate. Unfortunately, they displayed little apparent cytotoxicity to the other two types of cells.


Assuntos
Triterpenos , Humanos , Triterpenos/farmacologia , Triterpenos/química , Estrutura Molecular , Células CACO-2 , Linhagem Celular Tumoral , Lactonas/química , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...